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One method to obtain exact solutions of systems of partial differential equations is 
the method of the degenerate hodograph. Extensive application of solutions with a degener- 
ate hodograph in gasdynamics [i] permits the hope for successful application of this method 
in plasticity theory. The crux of the method is to reduce the dimensionality of the inde- 
pendent variables by imposing finite relations between the dependent variables. Solutions 
obtained by such a method are partially invariant [2] from the viewpoint of a group classi- 
fication. Simple waves of systems with two independent variables [3, 4] were used from the 
solutions with degenerate hodograph in plasticity theory. When the number of independent 
variables is greater than two, individual examples are known for the construction of simple 
[5] and double [6] waves in plasticity theory. An attempt is made in [6] to approach solu- 
tions with a degenerate hodograph from the viewpoint of generalized traveling waves and Rie- 
mann invariants when the number of independent variables is greater than two. This resulted 
in a limiting condition on the existence of solutions of the form of double waves (in the 
sense of [6]). In this paper a complete classification is given of double waves with func- 
tional arbitrariness for the equations of motion of an ideal rigidly plastic body under plane 
strain 

~ 1 1  - -  0"22 

Ov i O(~io ~ ~v~ 
P a t - -  axe . ,  a x e - = ~  ( i = 1 , 2 ) ,  

a~,l/ax 1 - -  av~/ax 2 
- a ~ l / a ~  + a ,2/axl  , (%~ - ~2.~)2 + 4 ~ 2  = 4k ~. 

(o.1) 

The notation here is customary. Summation from 1 to 2 is performed over repeated Greek sub- 
scripts. Without limiting the generality it can be considered that 9 = i. 

After substitution into (0.i), the relationships ozz = o - ksin28, 022 = o + ksin28, 
oz2 = kcos28, a system of four differential equations will be obtained for o(t, xl, x2), 
8(t, xz, x2), vi(t, xz, x2) (i = i, 2) 

Ova~Or = Oalaxl - -  2k (cos 28081axl q- sin 280810x2), 

av2/ot = O~/ax2 - -  2k(sin 28aO/oxl - -  cos 2808/axe), 

o l~/ax  a --- o, av2/ox 1 ~ avl/ax z -- 2 ctg 28ave/ax~ = O. 
(0.2) 

The trivial case 8 = const is excluded from further consideration. 

i. Let the velocities Vl and v 2 be functionally independent in a double wave. 
the variables v z and v 2 can be taken as the double wave parameters, i.e., we can set 

Then 

= z(v. v~), e = 0(v. v~). (I. i) 

After substituting (i.i) into (0.2), an overdefined system of four differential equations is 
obtained in the two functions vz, v 2 (x m xz, x 2 m y) 

vt§ U = 0, vx + G=v v = 0, 

where v = (Vz, v2)' and the matrices G z and G 2 have the form 

(1.2) 

- - a  2 - - a  I ' - - 2 c t g 2 0  ' 

a l  -'= ~2 A-- 2k(01 s in  20 -- O~ cos 20), 
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a 2 = O" 1 "~- 2#(0~ COS 20 + O~ sin 20), 

o~ = OGtOvl, O i = OO/OL' i (i ~ t ,  2). 

The greatest possible arbitrariness in the solution of the system (1.2) for given functions 
(i.i) is determined by the number 2 - r (r = rank(GzG = - G2GI)), as follows from an examina- 
tion of the system obtained by continuing (1.2). Consequently, for the existence of the 
double waves of (0.i) with given functions (i.i) having functional arbitrariness in the solu- 
tion, it is necessary that r S I. 

If r = 0, then a i = 0 (i = i, 2), which corresponds to stationary flow, i.e., a reduc- 
tion occurs partially of the invariant solution to the invariant [2] (this is excluded from 
the subsequent consideration). 

Remark. A corollary of the existence of double waves in the sense of [6] is the re- 
quirement r = 0. 

Let us examine the case when r = i. From this condition and from the form of the ma- 

trix (GzG 2 - G2G I) 

a 2 = a l ( ~ - c o s  20)/sin 20 ( a = •  ( 1 . 3 )  

I f  t h e  J a c o b i a n  3 ( v l ,  v ~ ) / 8 ( x ,  y )  = 0 ,  t h e n  a f t e r  g o i n g  o v e r  f r o m  t h e  i n d e p e n d e n t  v a r i -  
a b l e s  ( t ,  x ,  y )  t o  new v a r i a b l e s  ( v z ,  v 2 ,  x )  o r  ( v ~ ,  v 2 ,  y ) ,  t h e  c o n t r a d i c t i o n  t o  f u n c t i o n a l  
i n d e p e n d e n c e  o f  v~ and  v :  i s  o b t a i n e d .  T h i s  means  8 ( v  z,  v 2 ) / 8 ( x ,  y )  # 0.  L e t  us  make t h e  
passage over to new independent variables (v~, v2, t) 

x - - - - P ( v  1, v2, t), y = Q(v~, v2, t) (1.4) 
in the system (1.2): 

P2Qt - -  PtQ2 - alP2 + Pl(a.~ - a12 ctg 20) : 0, 

P l Q t  - -  PtQ1 - a2P~. + alPa = O, 

Q 2 A - P I - O ,  Q1 + P 2 H - 2 c t g 2 0 P  1 = 0 ,  

(1.5) 

where 

P~ ~ aP/av, ;  Qi = a Q / a v z :  p ,  = aP/at;  Qt - - -aQ/at;  

P 1 Q 2 - P 2 Q 1 - - @ o .  
(1.6) 

Since (1.5) is linear and homogeneous as a system of algebraic equations in the variables 
Pi, Qi (i = i, 2), then by virtue of (1.6) its determinant must satisfy the equality 

A - -  (Pt)  ~" - -  (Qt) ~ - 2 P t Q  t ctff 20 - ((a2) 2 - (a,) ~ - 2ala 2 ctg 20) = 0 .  

Since a~ and a 2 are connected by the relationship (1.3), then from the last equality 

P t  = }~Qt 

(E = (~ + cos 20)/sin 20, ~ = -+ l ,  ki = a~/av~ (i  = 1, 2)). 

Upon integrating (1.7) with respect to t there is obtained 

(1.7) 

P = %Q + %@:1, v2)- 

After substitution of (1.8) into the last two equations of the system (1.5) we have 

(1.8) 

Q2 + %Q1 + (>vaQ + x1) = o, 
()~ - 2 ctg 20)Q2 + 01 @- (E2Q + %2) --- 0. 

(1.9) 

Since ~ satisfies the equation X2 _ 2X cotan 2e - 1 = 0, then (X l - Xi2)Q + Xz - IX2 = 0 from 
(1.9). In the last relationship Qt = 0 and Pt = 0 follow for %1 - IX2 # 0 (this case is ex- 
cluded from examination). Hence 

~1--kX2 =0, %1--~= O. (i.i0) 
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After substitution of (1.8) in the first two equations of the system (1.5) and taking (i. I0) 
into account, ~ = $ results and 

(a2X + al)Q~ + (a2~ + Qt)(X2Q ~-~:)  = O. ( 1 . 1 1 )  

From t h e  e q u a l i t y  ~ = ~, ( 1 . 1 0 ) ,  and t h e  fo rm o f  t h e  f u n c t i o n s  ~ and ai ( i  = 1, 2 ) ,  t h e r e  
follows o = o(X), X = X(~). Therefore, the function Q(vl, v 2, t) satisfies the system of 
two quasilinear differential equations: the first equation in (1.9) and (i.ii). This sys- 
tem results in a linear homogeneous system whose compatibility is investigated by Poisson 
brackets, by a standard method. After obtaining one Poisson bracket, we have 

Qt(cQ + d) = O, 

where c = (3/8v~)((i + ~2)o' - 2~k) -~, d = (3/3v~)(X'/((l + X2)o ' - 2~k)). Since Qt ~ 0, 

then c = 0, d = 0 or after integration (I + kZ)o' - 2~k = ~(v2), X' = ~(v2) with arbitrary 

functions ~(v2), ~(v=). 

If (d(o'(l + ~2))/d~) ~ + (X") 2 ~ 0, then ~ = %(vz), but then there follows from (I.i0) 
that ~ = const. Consequently 

Z = c 2 L - - c l ;  

o + 2 ~ k O  +c30 =c~  

(c  i a r e  c o n s t a n t s ,  i = 1, 2, 3, 4 ) .  

After substitution of (1.12) into (1.4), by virtue of (1.8) 

x + c~ = ;~(Q + c=), y + c~ = O + e~. 

We have from the last equations 

(1.12) 

(1.13) 

L = (x + cl)/(y + c2). ( 1 . 1 4 )  

There is thereby obtained from (i.13), (1.14) and ~ = ~(8) that the stress field in the dou- 
ble wave under consideration is "statically" determinable: the functions 8 = 8(x, y) and 
o = o(x, y) are found from (1.13) and the relationships 

tan 0 = --(x -1- Cl)/(Y q- c2), ~ ----- - - t ,  tg 0 = (y -t- c2)/(x + cl), ~ = 1. 

Then follows from the "static" determinability of the stress field 

v~ = tHi(x, y) q-gi(x,  y ) ( i  = 1, 2), 

where H i = (C3kxi)/(l + X 2) (i = I, 2) by virtue of the equations (0.2), (I.13), 
and the functions gi(x, y) satisfy the system of differential equations 

Og~/Ox+OgJOy = O, OgJOx+OgJ@ + ( ( l -~2) l~ )O~/oy  = O. 

There is a general solution for ~(x, y) from (1.14) for the system (1.16) 

(I.15) 

and (1.14) 

(1.16) 

g~ = (~ ,  + ,~2 + ~(7) + l )mf ) / -V l  + z,,, 
(1.17) 

with arbitrary functions ~i = Cz(X), ~2 = ~2( r)~ their arguments (r =~(x+cI)2+ (y+c2)2). 
In a polar (r, ~) (x + ci = r cos ~, y + c 2 = r sin~ coordinate system the velocity field 
(1.15) and (1.17) obtained is written as 

= --@1', u ~ =  c3Ur + ~ + @2. 

Remark. The solution of (0.I) in which the velocity field has the form (1.15) while 
the stress field is independent of the time t is invariant relative to the subgroup generated 
by the infinitesimal operator [5] N = t8 t + V=Sx~. 

2. Let us consider the case when the velocity components v I and v= are functionally 
dependent: v 2 = ~(v~). 
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After substituting v 2 = ~(v I) into the last two equations of the system (0.2), we obtain 
by virtue of the inequality (8vl/axl) 2 + (8v2/~x2) = r 0 that 8 = %(v~), where 

�9 ' = - - ( a  + cos 20)/sin 20 (~ = ~ 1). ( 2 . 1 )  

Here the variables (o, v~) can be selected as independent parameters in the double wave. 
Substituting v 2 = r into the first two equations of the system (0.2), subtracting from 
the first equation (differentiated with respect to y), the second equation (differentiated 
with respect to x), using (2.1) and integrating with respect to t, we obtain 

O v / O y - - ~ ' O v / O x  = g(x, y). 

Then we deduce  f r o m  t h e  c o n t i n u i t y  e q u a t i o n  and t h e  l a s t  e q u a t i o n  

ov~/oy = g/O + (r ov /oz  ~- - g r  + (r 

A f t e r  c r o s s  d i f f e r e n t i a t i o n  o f  ( 2 . 2 )  

gx q- (I)" gv + eO" g'-/(l + (00')2) = O. 

(2.2) 

If the last equation can be solved for Vl, then the double wave is reduced to the stationary 
solution. Therefore, there necessarily results 

�9 "/(1 + (~,)2) = c2 ~ ,  + c~, g = (c 3 + c~x -47 c2y) -~ ( 2 . 3 )  

(c i are constants, i = i, 2, 3). Without limiting the generality, it can be considered 
that c 2 = 0 (this is achieved by rotating the coordinate system). Upon integrating (2.2) 
with (2.3) being used, we obtain 

(~t(U1) = (y "~- h(t))[(Z JC C), (C = C3/Cl) 
with the arbitrary function h = h(t). Taking account of (2.1), 
from the motion equations 

(2.4) 

(2.3), and (2.4), we have 

= 2~ko + ~' /2~)  in ( ~ +  c) ~ + (v + h) ~) + ~(t). ( 2 . 5 )  

Therefore, in the case of a functional dependence between vl and v 2 a solution in the 
form of a double wave is determined by (2.1), (2.3)-(2.5). 

3. Solutions of the system (0.i) invariant relative to the infinitesimal operator N [5] 
should be sought in the form 

= ~@, y), 0 = 0@, y), vi = tHi(x ,  y) + gi(x, y) (i = i ,  2). 

A f t e r  s u b s t i t u t i n g  t h e  r e l a t i o n s h i p s  ( 3 . 1 )  and ( 0 . 2 )  i n t o  t h e  f u n c t i o n s  o, 
c l o s e d  s y s t e m  o f  d i f f e r e n t i a l  e q u a t i o n s  i s  o b t a i n e d  

8, HI, H2 a 

(3.1) 

OR/Ox + tg 0 8 B ] @  = H 1 + H 2 tg 0, 

OB2~x --  ctg OOB2/Oy = H1 --  H2 ctg 0, 

OH1/Ox + OH/Oy : O, OH/Ox + dH]Oy - -  2 ctg 2 0 0 H I @  = O, 

and t h e  f u n c t i o n s  g i ( x ,  y )  ( i  = 1, 2) a r e  found  by s o l v i n g  t h e  s y s t e m  

O g / O x + O g 2 ~ y  ~ O, Og2/Ox + O g / O y - - 2  ctg 200gJOg = 0 

w i t h  t h e  v a l u e s  0 ( x ,  y )  f rom t h e  s o l u t i o n  o f  t h e  s y s t e m  ( 3 . 2 )  s u b s t i t u t e d  t h e r e i n .  He re  
R i = ~ + ( - 1 ) i 2 k 0  ( i  = 1, 2 ) .  

The b a s i s  o f  t h e  L i e  a l g e b r a  t h a t  c o r r e s p o n d s  t o  a t r a n s f o r m a t i o n  g r o u p  a l l o w a b l e  by 
t h e  s y s t e m  ( 3 . 2 ) ,  i s  f o rm ed  by t h e  o p e r a t o r s  [2] 

(3.2) 

X i = Oxi, Xa= ORi + @B 2, X4 = HaOHa-- x~ax=, 

X5 = H2OH1 - -  I110~ + x20. h - -  xlO. h + 2k (Oa 1 - -  Oa~), 

Xs+~ = x~ (0,1 + 0,~) + 0Hi (i = t, 2). 

(3.3) 
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o 

Fig. 1 

The optimal system of one-parameter subalgebras for the Lie algebra (3.3) has the form 

Xa, X~, X 4 + vX~ + [~Xa, 

(y, $ are arbitrary constants; dissimilar subalgebras correspond to different values of 

and 6)- 

The solution invariant relative to the subgroup generated by the operator X4 is needed 
for later. It is written [in the polar (r, 9) coordinate system] as 

H e  = c a j r ,  H~ = ( - - 2 k  s i n  2(0 - -  ~) + c, s i n  (cz - -  2 @ ) / r ,  

2k  cos 2(0 - -  q~) = c3 + c, cos  (c., - -  2 r  

~ (c, s i n  (c2 - -  2@ - -  2k s i n  2(0 - -  q~))~2 -}- c e 

(3.4) 

4. Let us consider the problem of a rigidly plastic state of plane strain for a wedge 
with aperture angle 2y > ~/2 loaded by uniform pressure p on one face. In a static formula- 
tion this problem was Considered by many authors (a sufficiently complete survey is in [7]). 
The question occurs about what will be the stress distribution if the pressure p exceeds the 
limit load p, = 2k(l + 2~ - ~/2) (p ~ p,). The stress-strain state in this problem can be 
constructed, thus: a stress-strain state governable by (3.4) is realized in domains I and 
III (see sketch). As in the stationary case, it is assumed that because of the action of a 
unilateral load the wedge is "bent" then a tensile stress should be expected on the side OD 
and a compressive stress on the side OA. These two domains are connected by a solution of 
the form of the double wave obtained in Sec. i (domain II). 

The arbitrary constants in these solutions are determined from the condition of con- 
tinuity of the velocity and stress fields on the abutment lines ~ = 3~/2 - 71 and ~ = 3~/2 + 
u and from the normal stresses given on the wedge boundaries 

Trv = 0, O'~ --~ - - p  f o r  q~ = 3 a / 2  + y,  

Trv ---~ 0, t5r ------- 0 f o r  ~ = 3 a / 2  - -  7. 

The angle ~i is also found from these conditions. It is here obtained that first ~ = ~(p) 
must be found by solving the equation 

p = (2k - -  ~)(27,(~) + s in  2(y - -  y , (~) ) ) .  ( 4 . 1 )  

Here the angle Yz(~) is determined from the relationships cos2(y - Y,(5)) = 5/(~ - 2k). Af- 
terwards the angle 71 = 71(~(P)) is set up. Consequently, we have the following stress- 
strain state; the stress field in domain I (3~/2 + 71 -< ~ < 3~/2 + ~) is 

2k cos  2(0 - -  q~) = ~ + (2k - -  ~) cos  (3a  - -  2q) + 2%,,), 

(; = - - - p  + ( 2 k - -  $ ) s i n ( 7 - -  q ~ W 3 n / 2 )  cos  (7 -5  ~ - -  2Y~ - -  3 a / 2 ) - - k s i n 2 ( O - -  qD), 

the velocity field is 

t,~ ~-- [ I r ,  F r = ( - - 2 k  s i n  2(0 - -  r  + (2k - -  ~) s i n  (3~ + 2y1 - -  2 @ ) / r ;  

in the domain II (3~/2 - T~ <- ~ <- 3~/2 + 71) 

v~ = 0 ,  t,~ = ~/r, 0 = ~ - - 2 a ,  

(~ = ~9 - -  2kq~ - -  p q -  (2k - -  ~)(sin 2('1' - -  ~',) + 3 a  + 2y , ) /2 ;  
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in domain III (3~/2 - 7 ~ ~ S 3~/2 - 71) the stress field is 

2k  cos  2(0  - -  ~)  = ~ + (2k  - -  ~) cos  ( 3 n  - -  2 ~  - -  27~),  

o = ( 2 k - -  ~) s i n  ( 3 a i 2  - -  ~ - -  ? )  cos  ( 3 ~ / 2  + ? - -  T - -  2?~) - -  k s i n  2 (0  - -  ~ ) ,  

and the velocity field is 

v~ = $/r,  ~ -=-- ( - - 2 k  s i n  2 (0  - -  ~)  + (2k  - -  ~) s i n  (3~  - -  2 r  - -  271)) / r .  

T h e  s t a t i o n a r y  s o l u t i o n  i s  r e a l i z e d  w h e n  p = p.~ ( 5 ( p . , . )  = 0 ) .  S i n c e  ( d p / d S ) < = 0  = - 8 k 2 ( 1 +  
u - ~/4), then from the theorem about implicit functions The solvability of (4.1~ for ~ in 
the neighborhood of the limit load p, follows. Here if p > p,, then ~(p) < 0. When p + =, 
then r +-~, while 7z + 7, i.e., the domain II is expanded over the whole wedge. 

Remark. The "stationary" part of the velocity (gl, g2) is obtained after the construc- 
tion of the stress field. In particular, if the wedge is in the rest state at the initial 
time t = 0, then the solution will be gz = g2 = 0. The line r = g(~) separating the plas- 
ticity zone from the rigid rest zone is determined as follows: g = go = const in domain II 
while the function g(~) in domain I (III) is found by solving a linear ordinary differential 
equation ~g' - g(rHr) = 0 with the initial conditions g = go for ~ = 3~/2 + 7z (~ = 3~/2 - 

71). 

The author is grateful to B. D. Annin for discussing the results of the research. 
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